

CUSTOMERS FIRST

LA100 Assumptions and Power System Reliability Program (PSRP)

LA100 Assumptions and Caveats

- Existing distribution overloads were mitigated by 2020
- Future distribution overloads mitigated by new circuits and transformer banks (no new substations)
- Transmission Projects identified in 10-Year Plan will be completed on time
- Land acquisition and community engagement not considered
- Considerations for Distribution Voltage Upgrade was not part of the study

Power System Reliability Program (PSRP) History and Objectives

- LADWP is responsible for power delivery that is safe, reliable, and cost-effective
- In 2007, LADWP implemented the Power Reliability Program (PRP) to address Distribution system reliability concerns
- In 2014, LADWP replaced the PRP with the PSRP which expanded the program to include other sectors of the electric power system:
 - Generation, Transmission, Substation, and Distribution

PSRP Budget

Previous 5-Year Budget

Distribution & Substation Accomplishments

- Met established targets over the last five years for Distribution Assets (poles, crossarms, cables, and transformers)
- Strived to Achieve Substation Asset
 Replacement Targets (Transformers, Circuit
 Breakers, Substation Automation) despite
 competing capital projects and recent COVID
 challenges

Distribution Accomplishments

PSRP Replacement Actuals

ladwp.com 6

Substation Accomplishments

FY 19-20 Replacement Targets	FY 19-20 Achievements
2 Receiving Station (RS) and 2 Switching Station (SS) transformers	1 RS transformer *
21 Distributing Station (DS) transformers	15 DS transformers * Completed 3 DS Transformer Bank life extension jobs
36 Circuit Breakers (4.8-kV, 34.5-kV, and >100kV)	15 Circuit Breakers replaced * Completed 121 Circuit Breaker life extension jobs
12 Substation Automation (SAS-2) Upgrades	7 SAS-2 upgrades completed *

* Competing capital projects and COVID impact on resources

ladwp.com

4.8kV Feeders (Circuits)

34.kV Trunks (Circuits)

*Mild Summer Loading in 2019

Distributing Station Load Relief

- Over 27 Distributing Station Overloads
 - Increase Size of Transformers
 - Add Additional Transformers
 - Transfer Load to Other Distributing Stations
 - Build New Distributing Stations
 - Consideration for Future Voltage Conversion

Preparing our Distribution System (2022 – 2035)

Component	
Upgrade 4.8 kV Feeder Capacity	
Expand 34.5 kV Circuit Capacity	
New 4.8 kV Distribution Station Capacity	
Upgrade and New Receiving Station Capacity	
New Distribution Voltage Conversion	

Voltage Upgrade Initiative

Evaluate options for converting the 4.8kV system to a higher voltage level to address:

- Increasing Load Growth
- DER adoption (Solar & Energy Storage)
- Constrained Footprint

ladwp.com

Study Components

~	Qualitative Analysis	Identify key consideration and select five voltages & configurations for detailed study
-1.	Modeling & Technical Analysis	Derive DS and feeder models and assess capacity & performance of identified voltage options
	Economic Assessment	Calculate and compare projected capital, operational, and reliability costs
Q	Recommend Actions	Summarize findings, identify key considerations, and provide recommendations
*	Investigate Alternatives	Identify new Voltage Upgrade areas for program Initiation, refine costs, schedule, and utilize industry best practices

2035 Distributing Station Load Forecast

2045 Distributing Station Load Forecast

New DS Count Estimates		
4.8kV Baseline	61	
12.47kV Conversion	46	

Capital Cost Breakdowns

Substation Expansion

- New Distributing Stations (DS) or Expansions Needed
 - Potentially 60 DSs exceed firm capacity in 15 years
 - New DS or Expansion
 - New DS (\$40M each)
 - Expansion Costs Vary
 - Ten New DSs required by 2035
- New Receiving Stations (RS) or Expansions (Racks) Needed
 - Five RSs exceeding firm capacity by 2030
 - RS-A Rebuild (10-years) \$130M
 - Seven new Racks (\$20M each)
 - New RS may be needed after 2035
- Six More RSs exceed capacity by 2040

PSRP Targets

- PSRP Needs to be Revamped
 - Address LA100 overloads assumed to be complete
 - Meet LA100 requirements/goals
- Increase Distribution Asset Upgrades by Four to Six fold
- Several New Distributing Stations will have to be built by 2045
- Build New Receiving Stations for increased load growth
- Expand Distribution and Substation Automation to improve reliability

Next Steps

- Discuss Targets with Stakeholders
- Verify Schedule
- Determine Labor Resources
- Determine Material Resources Needed
- Secure Budget
- Outreach/Approvals

Questions?

