LA100

ACHIEVING 100% RENEWABLE ENERGY IN LOS ANGELES

Energy Storage Update SLTRP Advisory Group Meeting #7

December 17, 2021

LA100 Common Investments Across All Scenarios

Electrification
Efficiency
Flexible Load

Customer Rooftop Solar

Solar: + >5,700 MW Wind: + >4,300 MW

Renewable Energy

Energy Storage

+>2,600 MW

Transmission,
Distribution

Renewably Fueled
Dispatchable
Turbines
+>2,600 MW
(in basin)

Much More

BESS = <u>B</u>attery <u>E</u>nergy <u>S</u>torage <u>S</u>ystem

Accelerated Energy Storage

- Utility scale energy storage at or near most in-basin Generating Stations
- Negotiate expansion of Beacon Energy Storage by 25 MW
- Expand energy storage by co-locating storage at all future utility scale solar projects
- Advertised Energy Storage Rolling Request for Proposals in 2021
- Increased usage of Castaic pumped hydro to integrate increased renewables

Multiple Roles for Energy Storage

Low-Carbon Energy Supply

Enable greater deployment of renewables and direct low-carbon energy supply to customers

Dispatchable Resource

Provide reliability and grid stability with multiple options for output and duration

Customizable Options

Support scaled deployment in response to energy transformation

Energy Storage Cost & Duration Spectrum

Storage should have a duration Medium-Long Duration that fits the need **Chemical Thermochemical Short Flow Batteries** Mechanical **Electro-chemical** (Li-ion Batteries) Thermal 4 hours \$100/kWh \$50/kWh \$300/kWh \$10/kWh

Different technologies are best suited for each duration type

Energy Storage Today

Mechanical

Pumped Hydro

9 TWh (93%) Size: GWhs, 8–12 hours **Electro-chemical**

Lithium-Ion Batteries

0.7 TWh (7%) Size: MWhs, 1–6 hours

Can these technologies fill all the energy storage needs?

Planning Guidelines

Identify system
Needs

- System reliability and resiliency studies
- Transmission assessment
- Integrating renewable energy
- Reducing peak demand
- Deferring power system upgrades

2

Studies

- Evaluate Costs
- Identify storage applications
- Evaluate emerging storage technologies
- Perform studies to assess use case

3

Consider External Factors

- Safety
- Impact to frontline communities
- Regulatory Issues
- Price projections
- End of life applications and disposal
- Environmental impact

Energy Storage Technology Comparison

More		Li-Ion Batteries	Pumped Hydro	Thermal	Mechanical	Chemical
Favorable	Cost of Storage					
	Duration					
	Efficiency (AC-AC)					
Less Favorable	Environmental					
	Footprint					
	Inertia					
	Maturity					
	O&M					
	Response Time					
	Safety					
	Scalability					
	Startup Time					

No energy storage technology is one-size-fits-all

Studies Impacting ES Deployment Strategy

- Maximum Generation Renewable Energy Penetration Study (Completed 2015)
- SB801 Compliance Study (Completed 2018)
- Transmission Hosting Capacity Study (Completed 2021)
- Distribution System Voltage Conversion Study (Completed 2021)
- LA100 Study (Completed 2021) & SLTRP (Rolling)
- System Impact and Feasibility Study (Rolling)
- 10 Year Transmission Expansion Planning (Rolling)
- Reliability & Resiliency Studies (In-progress)

Leading Collaborative Energy R&D Around the World

informs decision-making through ~\$420M in collaborative annual research involving nearly 400 entities in ~40 countries - spanning the generation, delivery, and use of electricity.

ENGAGING

- Utilities
- Academia
- OEMs
- Regulators

LISTENING

- Financial Community
- Policy Makers
- ConsumerAdvocates
- Media

Safety & Cost Studies in Collaboration with EPRI

- **P94: Energy Storage and Distributed Generation**
 - SB 801 Study (Completed) -> Eland Solar+BESS PPA Procurement (Completed 2018)
 - IPP Compressed Air Energy Storage CBA Analysis (Completed 2019)
 - Transmission Hosting Capacity Study (Completed 2021)
 - BESS End-of-Life Recycling Study (Completed 2021)
 - Fire Prevention and Mitigation Study (In-progress)
- P174: DER Integration
 - Inverter Based Resources Control Study (Completed 2021)
- P197: Environmental Aspects of Fueled Distributed Generation and Energy Storage
 - Fire Water Study (In-progress)
- P221: Bulk Energy Storage
 - Bulk Energy Storage Cost and Performance (In-progress)
- Pools utilities' resources together to evaluate Long Duration Energy Storage (ES) technologies

Source: EPRI

12

Challenges With Emerging Technologies

- Unknown performance due to the lack of large scale sites in operation
- Risks with deployment emerging technology
 - Applied Engineering risk
 - Scaling up risk
 - Learning curve risk for initial years
 - Uncertainty on the cost
- Financing difficulty due to uncertain ROI (return on investment)

Energy Storage Technology Database

Currently 52 total entries

Туре	Medium	TRL	Туре	Medium	TRL
Thermal	Silicon	5	Thermal	Gravel	3
Mechanical	Compressed Air	9	Chemical	Hydrogen	7
Electrochemical	Lead	8	Mechanical	Air	2
Mechanical	Gravitational	6	Mechanical	Compressed Air	4
Thermal	Ceramic	2	Electrochemical	Lithium Ion	9
Thermal	Ceramic	5	Electrochemical	Lithium Ion	9
Mechanical	Flywheel	7	Electrochemical	Lithium Ion	9
Electrochemical	Liquid Metal	4	Electrochemical	Lithium Ion	4
Thermal	Carbon	3	Thermal	Liquid Salt	4
Mechanical	Compressed Air	7	Thermal	Silicon	3
Mechanical	Flywheel	9	Thermal	Liquid Salt	9
Thermal	Aluminum Phase Change	3	Thermal	Liquid Salt	2
Thermal	Rock	5	Mechanical	Water	6
Thermal	Concrete	4	Mechanical	Steel	3
Electrochemical	Lithium Ion	6	Thermal	Sand	5
Mechanical	Compressed Air	9	Electrochemical	Sodium Ion	9
Thermal	Heat Transfer Fluid	3	Electrochemical	Sodium Sulfur	8
Thermal	Sulfur	4	Electrochemical	Lithium Ion	6
Thermal	Concrete	6	Electrochemical	Lithium Ion	8
Mechanical	Concrete	4	Chemical	Thermochemical Redox	4
Mechanical	Compressed Air	4	Mechanical	Compressed Air	8
Mechanical	Gravitational	3	Mechanical	Steel	9
Mechanical	Flywheel	4	Chemical	Metal Hydride	6
Mechanical	Liquid Air	7	Electrochemical	Flow Battery	8
Chemical	Hydrogen	7	Electrochemical	Metal Air	8
Mechanical	Compressed Air	6	Electrochemical	Flow Battery	8

Growing database of energy storage technologies of every type

Growing database or energy storage teermoregies or every type

P221 5-Year Timeline*

Source: EPRI

^{*}Subject to Member approval; Other Projects could be done if funding allows

P221 Supplemental Task: Cost and Performance Assessment

Key Objectives

- Assess strategies for deploying long duration energy storage
- Compare select energy storage technologies
- Technical performance and economic benefit assessments

Value to Funders

 Actionable research to deliver reliable, dispatchable power through long duration energy storage

Simulation of long duration energy storage cost-benefit and performance

Bulk Energy Storage Cost and Performance Assessments

Research Focus Areas

Chemical

- Low-Carbon Fuels
 - Synthetic Fuels
- Thermo-Chemical Systems

Advanced Cycles

- Low-Carbon Power Using Engines and Fuel Cells
- Supercritical CO₂ and Other
 Advanced Cycles

Dr. Andrew Maxson

Team

Program Manager

George Booras

Technical Leader, Principal

Dr. Des Dillon

Technical Leader, Principal

Horst Hack

Technical Executive

Scott Hume

Technical Leader, Principal

Jose Marasigan

Technical Leader, Sr.

Mechanical

- Compressed Air
- Gravitational Systems
 - Rail

Integration

- Optimal Integration with Thermal Plants
 - New-Build Plants
- **Retrofit of Existing Assets**

Thermal

- Liquid Air Energy Storage
- Low-Cost Media (e.g., sand)
 - Pumped Heat

Strategies

- Comparisons of Processes
 - Seasonal Energy Storage
- Techno-Economic Analyses

P221 Supplemental Task Selected Technologies

 Range of energy storage systems have been selected to choose from based on established relationships/projects in place and perceived value

Organization/Technology	Туре	Medium	TRL	Organization/Technology	Туре	Medium	TRL
Storworks	Thermal	Concrete	5	Highview Power	Mechanical	Liquid Air	7
Echogen Power Systems	Thermal	Heat Transfer Fluid	3	Hydrostor	Mechanical	Compressed Air	6
Energy Vault	Mechanical	Concrete	4	Malta Pumped Heat	Thermal	Liquid Salt	4
Advisian	Thermal	Liquid Salt	9				

Goal is to have project diversity to provide a spectrum of results

Project Stakeholders and Participants

Project Management

Engineering

Site Hosts

Thermal Energy Storage

MALTA Pumped Heat ES

TRL = 4

Thermal

- Heat pump cycle for charging; closed Brayton cycle (air) with recuperation for generation
- Hot storage is "solar salt," up to 565°C
- Cold storage is proprietary coolant down to -60°C
- Two tanks for each cycle between charged and discharged
- Plate-fin, small-channel heat exchanger, large enough to accommodate low ΔT at high efficiency
- Round-trip efficiency is ~60%
- Commercial system: 100 MW with 10 hrs duration;
 2030 costs are stated to be <\$100/kWh

Source: Malta

Beacon Site – EPRI Supplemental Bulk Energy Storage Cost and Performance Study

Mechanical Energy Storage

Highview Liquid Air Energy Storage

TRL = 7

Mechanical

- Liquefy air to store energy
- Pressurize and heat for expansion to generate power
- 60% AC / AC conversion possible
- Can use external 'cold' from LNG vaporizers
- Can use 'waste heat' in regeneration

350 kWe / 2.5 MWh Pilot Plant, Slough UK

2 MWe Demonstration Project in UK

HYDROSTOR Adiabatic Compressed Air Energy Storage

• How it works: Compresses air and stores underground; stores heat of compression separately. Uses a mined cavern that holds air under constant pressure by a water reservoir and column; siting not dependent on salt domes. Discharges by expanding air and using stored heat.

Typical AC Efficiency: 60%

• Cycle Life: >30 years

Maturity: Demonstration project in Ontario (1.75 MWe / 7 MWh)

Benefits:

- Capable of large sizes and longer durations
- Low fire risk, no toxic materials
- Challenges:
 - Constrained to favorable geological locations
- Applications:
- Standalone energy storage

Mechanical

Source: Hydrostor

ENERGY VAULT Gravity Energy Storage

- Novel "stacked block" gravity storage
- Vision-based precision stacking system without interlocking
- 0 to 100% speed in 2.9 sec; 82% round-trip efficiency (RTE) AC-AC
- Initial market entry product is "Evie35" (35 MWh)
- Key advancement is overcoming "pendulum effect" of lifting with a counterweight, allowing for continuous movement
- One-arm pilot in Switzerland (July 2018)
- Recently funded \$110M by SoftBank Vision Fund

Source: Energy Vault

Ultra-Long Duration Storage

- 1. As Variable Renewable Energy (VRE) content on the grid increases, the duration of storage needed to provide reliability also increases.
- 2. As duration increases, battery costs become prohibitive, leading to a need for other, lower-cost technologies.

Annual electricity from wind and solar, %

Source: "Long-Duration Electricity Storage Applications, Economics and Technologies," Joule, vol. 4, 2020.

Long duration storage needed at high VRE penetration

LA100 Common Investments Across All Scenarios

Electrification Efficiency Flexible Load

Customer Rooftop Solar

Solar: + >5,700 MW

Renewable Energy

Wind: + >4,300 MW

Energy Storage

+ >2,600 MW

Transmission, Distribution

+>2,600 MW (in basin)

Much More

Conclusions

All Durations

 Consider all durations and types of storage available and emerging in the resource planning process

Portfolio

 A portfolio of energy storage technologies is better than deploying only one

Spectrum

 Ultimately, a spectrum of energy storage will be needed: short-, mid-, and long-duration

LA100

ACHIEVING 100% RENEWABLE ENERGY IN LOS ANGELES

